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Exam for AST5220 — Cosmology II

Date: Wednesday, June 14th, 2012

Time: 09.00 – 13.00

The exam set consists of 15 pages.

Appendix: Equation summary

Allowed aids: None.

Please check that the exam set is complete before answering
the questions. Each problem counts for 25% of the final score.
Note that the exam may be answered in either Norwegian or
English, even though the text is in English.
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Problem 1 – Background questions

Answer each question with three or four sentences.

a) Write down the Boltzmann equation on schematic form,
and expand the left-hand side into partial derivatives using
x, p, p̂ and t as free variables. Why can we neglect the term
depending on p̂?

b) What is the physical interpretation of the conformal time,
η?

c) What is the main difference between dark matter and baryons?

d) How does inflation solve the so-called isotropy problem?

e) During tight coupling we neglect all photon moments ex-
cept Θ0, Θ1 and Θ2. Why can’t we neglect also Θ1 and
Θ2?

f) Why is the position of the first peak in the CMB power
spectrum a sensitive probe of the total density of the uni-
verse? (Explain with a drawing if you think that is useful.)
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Problem 2 – Recombination and the electron fraction

0500100015002000

Redshift, z

0.0001

0.001

0.01

0.1

1

E
le

c
tr

o
n

 f
ra

c
ti

o
n

, 
X

e

-7.5 -7 -6.5 -6
Time coordinate, x = log a

0

1

2

3

4

5

V
is

ib
il

it
y

 f
u

n
ct

io
n

, 
g

Figure 1: Left: The electron fraction as a function of redshift. Right: The
visibility function, g.

The CMB field we observe today is to a very large extent
created during the recombination epoch, when electrons and
protons combined into neutral hydrogen. In order to understand
this period quantitatively, it is necessary to know the electron
fraction as a function of time, and we have in fact computed this
during the course work, and the result is shown in the left panel
of Figure 1. The right panel shows the corresponding visibility
function, g.

a) As seen in the plot of Xe above, it is possible to define
more or less three redshift ranges for the electron fraction,
namely z > 1500, 1500 > z > 750 and z < 750. Explain
this behaviour.

b) As long as Xe > 0.99 we used the Saha equation

X2
e

1−Xe
=

1

nb

(
meTb
2π

)3/2

e−ε0/Tb, (1)
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to solve for Xe, which basically is the Boltzmann equation
applied to the process e+p↔ H+γ. But it does not apply
always. What requirement(s) must be fulfilled in order for
the Saha equations to hold?

c) At some stage one has to switch from the Saha equation
the more accurate Peebles equation,

dXe

dx
=
Cr(Tb)

nb

[
β(Tb)(1−Xe)− nHα(2)(Tb)X

2
e

]
. (2)

This describes recombination to the first excited hydrogen
state (n = 2), not to the ground state (n = 1). Why is
recombination to the ground state not relevant in our case?

d) What is the physical interpretation of the visibility func-
tion? Why is it zero at x < −8? Why is it zero at x > −5?

Problem 3 – The Einstein equations

One of the most central parts of AST5220 is to derive and
solve the linear Boltzmann-Einstein equations. In this problem
we will therefore derive the first Einstein equation, precisely like
we did in the lectures.

Before we start the real work, we have to choose a gauge,
and we decided to adopt the conformal Newtonian gauge for
our studies,

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)(dx2 + dy2 + dz2). (3)
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Here Φ is the Newtonian potential and Φ is the curvature po-
tential.

a) Given this metric, the first step is to derive the Christoffel
symbols. The only non-zero Christoffel symbols are

Γ0
00 = Ψ,0 (4)

Γ0
0i = Γ0

i0 = ikiΨ (5)

Γ0
ij = δija

2[H + 2H(Φ−Ψ) + Φ,0] (6)

Γi00 =
iki

a2
Ψ (7)

Γij0 = Γi0j = δij(H + Φ,0) (8)

Γijk = iΦ[δijkk + δikkj − δjkki] (9)

Derive the expressions for Γ0
0i and Γijk.

b) The next step is to compute the Ricci tensor, which in
general reads

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα. (10)

The 0i-component of this tensor is zero, while the ij-component
is

Rij = δij[(2a
2H2 + aä)(1 + 2Φ− 2Ψ)+

a2H(6Φ,0 −Ψ,0) + a2Φ,00 + k2Φ] + kikj(Φ + Ψ).

But what is R00? As a help on your way, I will let you know
that

Γi00, i =
−k2

a2
Ψ, ΓiiβΓβ00 = Γii0Γ

0
00 = 3HΨ,0. (11)

You do not have to show this.
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c) Third, we have to compute the Ricci scalar, R ≡ Rµ
µ =

gµνRµν = g00R00 + gijRij. This is rather ugly, since there
are quite a lot of terms involved, and we won’t spend time
on it here. Instead, we just write down the final expression,
including only first-order terms,

δR = −12Ψ(H2+
ä

a
)+

2k2

a2
Ψ+6Φ,00−6H(Ψ,0−4Φ,0)+4

k2Φ

a2

Using this expression and the results derived above, show
that the first-order contribution to the Einstein tensor is

δG0
0 = −6HΦ, 0 + 6ΨH2 − 2

k2Φ

a2
(12)

d) To complete the Einstein equation,

δG0
0 = 8πδT 0

0

we need an energy-momentum tensor on the right-hand
side. You will not be asked to derive this, but only describe
qualitatively what goes into it: Which components are the
bare minimum we need to include in order to obtain a phys-
ically relevant power spectrum, ie., one that looks qualita-
tively similar to the current ΛCDM spectrum? Which of
these components was most important at very early times,
at x = log a ∼ −10, and why?

Problem 4 – Line-of-sight integration

A crucial part in speeding up a Boltzmann code is to change
from direct integration of the Boltzmann-Einstein equations to
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a smarter approach, called “line-of-sight” integration. In this
problem, we will derive the expression for the transfer function
Θl(k) in terms of the source function.

Before we begin, let us review some relations concerning the
Legendre polynomials, Pl(µ), that you may or may not find
useful in the following:

P0(µ) = 1

P1(µ) = µ

Pl(µ) = (−1)lPl(−µ)∫ 1

−1

Pl(µ)Pl′(µ)dµ = δll′
2

2l + 1

jl(x) =
1

2il

∫ 1

−1

eiµxPl(µ)dµ

fl =
il

2

∫ 1

−1

f(µ)Pl(µ)dµ

Here jl(x) is the spherical Bessel function of order l, and f(µ)
is an arbitrary function defined between -1 and 1.

Also, note that in the following, ˙ means derivative with re-
spect to conformal time.

a) First, from an coding point of view, why does one obtain
such a large speed-up with the line-of-sight integration ap-
proach compared to direct integration?

b) In a few sentences, explain what the main physical differ-
ence is between the line-of-sight integration and the direct
solution approaches.

c) The starting point of the line-of-sight integration method is
the Boltzmann equation for photons before expanding into
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multipoles,

Θ̇ + ikµΘ + Φ̇ + ikµΨ = −τ̇ [Θ0 −Θ + µvb],

where Θ = Θ(k, µ, η) and µ is the angle between the photon
propagation direction, p̂, and the wave vector, k̂. Define

S̃ ≡ −Φ̇− ikµΨ− τ̇ [Θ0 + µvb],

and show that equation can be formally solved to obtain an
expression for the photon amplitude observed today given
by

Θ(η0, k, µ) =

∫ η0

0

S̃eikµ(η−η0)−τdη.

(Note that we have dropped a quadrupole/polarization term
in this expression, in order to keep things simple(r).)

d) Assume that S̃ does not depend on µ (in this sub-problem
only). Show that in this case

Θl(η0, k) = (−1)l
∫ η0

0

S̃e−τjl[k(η − η0)]dη,

where Θl(η, k) are the multipole expansion coefficients of
Θ(η, k, µ).

e) (Hint: This sub-problem is the toughest in the exam set.
Don’t spend all your time on getting this right, but rather
do it after finishing up the other problems.) In reality, S̃
does of course depend on µ, and this have to be taken into
account in the expression in c). The easiest way of doing
this is by noting that S̃ is multiplied with eikµ(η−η0), and µ
and k(η − η0) are therefore Fourier conjugate (just like k
and x). This allows us to set

µ→ 1

ik

d

dη
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everywhere µ appears in S̃, just like we can set ik → d/dx
in a standard Fourier transformation.

Use this to show that the full solution for the transfer func-
tion is

Θl(η0, k) =

∫ η0

0

S(k, η)jl[k(η0 − η)]dη,

where

S(k, η) = e−τ
[
−Φ̇− τ̇Θ0

]
+

d

dη

[
e−τ
(

Ψ− vbτ̇

k

)]
(Hint: You may need your old knowledge about integration-
by-parts to get this right :-))

f) Introducing the visibility function, g(x) ≡ −τ̇ e−τ , the source
function can be rewritten into the form

S(k, η) = g[Θ0 + Ψ] +
d

dη

(gvb
k

)
+ e−τ

[
Ψ̇− Φ̇

]
.

What is the physical interpretation of each of these terms?
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1 Appendix

1.1 General relativity

• Suppose that the structure of spacetime is described by
some metric gµν.

• The Christoffel symbols are

Γµαβ =
gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
(13)

• The Ricci tensor reads

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα (14)

• The Einstein equations reads

Rµν −
1

2
gµνR = 8πGTµν (15)

where R ≡ Rµ
µ is the Ricci scalar, and Tµν is the energy-

momentum tensor.

• For a perfect fluid, the energy-momentum tensor is

T µν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (16)

where ρ is the density of the fluid and p is the pressure.
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1.2 Background cosmology

• Four “time” variables: t = physical time, η =
∫ t

0 a
−1(t)dt

= conformal time, a = scale factor, x = ln a

• Friedmann-Robertson-Walker metric for flat space: ds2 =
−dt2 + a2(t)δijdx

idxj = a2(η)(−dη2 + δijdx
idxj)

• Friedmann’s equations:

H ≡ 1

a

da

dt
= H0

√
(Ωm + Ωb)a−3 + Ωra−4 + ΩΛ (17)

H ≡ 1

a

da

dη
= H0

√
(Ωm + Ωb)a−1 + Ωra−2 + ΩΛa2 (18)

• Conformal time as a function of scale factor:

η(a) =

∫ a

0

da′

a′H(a′)
(19)

11



1.3 The perturbation equations

Einstein-Boltzmann equations:

Θ′0 = − k
H

Θ1 − Φ′, (20)

Θ′1 = − k

3H
Θ0 −

2k

3H
Θ2 +

k

3H
Ψ + τ ′

[
Θ1 +

1

3
vb

]
, (21)

Θ′l =
lk

(2l + 1)H
Θl−1 −

(l + 1)k

(2l + 1)H
Θl+1 + τ ′

[
Θl −

1

10
Θlδl,2

]
, l ≥ 2

(22)

Θl+1 =
k

H
Θl−1 −

l + 1

Hη(x)
Θl + τ ′Θl, l = lmax (23)

δ′ =
k

H
v − 3Φ′ (24)

v′ = −v − k

H
Ψ (25)

δ′b =
k

H
vb − 3Φ′ (26)

v′b = −vb −
k

H
Ψ + τ ′R(3Θ1 + vb) (27)

Φ′ = Ψ− k2

3H2
Φ +

H2
0

2H2

[
Ωma

−1δ + Ωba
−1δb + 4Ωra

−2Θ0

]
(28)

Ψ = −Φ− 12H2
0

k2a2
ΩrΘ2 (29)
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1.4 Initial conditions

Φ = 1 (30)

δ = δb =
3

2
Φ (31)

v = vb =
k

2H
Φ (32)

Θ0 =
1

2
Φ (33)

Θ1 = − k

6H
Φ (34)

Θ2 = − 8k

15Hτ ′
Θ1 (35)

Θl = − l

2l + 1

k

Hτ ′
Θl−1 (36)

1.5 Recombination and the visibility function

• Optical depth

τ(η) =

∫ η0

η

neσTadη
′ (37)

τ ′ = −neσTa
H

(38)

• Visibility function:

g(η) = −τ̇ e−τ(η) = −Hτ ′e−τ(x) = g(x) (39)

g̃(x) = −τ ′e−τ =
g(x)

H
, (40)∫ η0

0

g(η)dη =

∫ 0

−∞
g̃(x)dx = 1. (41)
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• The Saha equation,

X2
e

1−Xe
=

1

nb

(
meTb
2π

)3/2

e−ε0/Tb, (42)

where nb = Ωbρc
mha3

, ρc = 3H2
0

8πG , Tb = Tr = T0/a = 2.725K/a,
and ε0 = 13.605698eV.

• The Peebles equation,

dXe

dx
=
Cr(Tb)

nb

[
β(Tb)(1−Xe)− nHα(2)(Tb)X

2
e

]
, (43)

where

Cr(Tb) =
Λ2s→1s + Λα

Λ2s→1s + Λα + β(2)(Tb)
, (44)

Λ2s→1s = 8.227s−1 (45)

Λα = H
(3ε0)

3

(8π)2n1s
(46)

n1s = (1−Xe)nH (47)

β(2)(Tb) = β(Tb)e
3ε0/4Tb (48)

β(Tb) = α(2)(Tb)

(
meTb
2π

)3/2

e−ε0/Tb (49)

α(2)(Tb) =
64π√
27π

α2

m2
e

√
ε0
Tb
φ2(Tb) (50)

φ2(Tb) = 0.448 ln(ε0/Tb) (51)
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1.6 The CMB power spectrum

1. The source function:

S̃(k, x) = g̃

[
Θ0 + Ψ +

1

4
Θ2

]
+ e−τ

[
Ψ′ + Φ′

]
−

1

k

d

dx
(Hg̃vb) +

3

4k2
d

dx

[
H
d

dx
(Hg̃Θ2)

]
(52)

d

dx

[
H
d

dx
(Hg̃Θ2)

]
=
d(HH′)
dx

g̃Θ2 + 3HH′(g̃Θ2 + g̃Θ′2) +H2(g̃′′Θ2 + 2g̃′Θ′2 + g̃Θ′′2 ), (53)

Θ′′2 =
2k

5H

[
−
H′

H
Θ1 + Θ′1

]
+

3

10

[
τ ′′Θ2 + τ ′Θ′2

]
−

3k

5H

[
−
H′

H
Θ3 + Θ′3

]
(54)

2. The transfer function:

Θl(k, x = 0) =

∫ 0

−∞
S̃(k, x)jl[k(η0 − η(x))]dx (55)

3. The CMB spectrum:

Cl =

∫ ∞
0

(
k

H0

)n−1

Θ2
l (k)

dk

k
(56)
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