Class 5: Equivalence Principle

In this class we will discuss the conceptual foundations of General Relativity, in which gravity may be associated with the reference frames in which perceive events

Class 5: Equivalence Principle

At the end of this session you should be able to ...

- ... state the Equivalence Principle: a freely-falling frame is locally equivalent to an inertial frame, and a gravitational field is locally equivalent to an acceleration
- ... understand the implications of the Equivalence Principle for clock rates and the curvature of space-time
- ... state under what conditions Special Relativity applies, compared to General Relativity
- ... discuss the nature of gravity according to General Relativity, in comparison with classical physics

Why is gravity special?

- All objects fall at the same rate in a gravitational field
- $F=m a=m g \rightarrow a=g$
- Sometime stated as "inertial mass is the same as gravitational mass" (i.e., m's cancel in the equation)
- It's not true for other forces (e.g. electromagnetism)
- Is this a coincidence or a deeper truth?

http://lannyland.blogspot.com.au/2012/12/10 -famous-thought-experiments-that-just.html

Freely-falling frames

- In Special Relativity, the laws of physics are the same in all inertial frames, which move with constant relative velocity

http://www.miami.com/things-to-do-in-miami/zero-g-weightless-flight-3702/
- The fundamental law of gravity - that all objects fall at the same rate in a gravitational field - suggests that gravity can be understood in terms of freely-falling frames

Freely-falling frames

- Einstein was very fond of thought experiments - that is, imagining situations which may not be precisely replicated in a laboratory, but which confront the logic of a theory*

https://www.cartoonstock.com/directory/t/thought_experiment.asp

"SINCE YOU CONDUCT ONLY THOUGHTEXPERIMENTS, WE WERE HOPING YOU WOULD, FROM TIME TO TIME, COME UP WITH SOME THOUGHT-RESULTS."

Freely-falling frames

Einstein imagined what the laws of physics would look like from the perspective of a freely-falling observer

- If you drop a laboratory in a gravitational field, it acquires the same acceleration as the objects within it
- Mechanics experiments would yield the same results in a freely-falling laboratory, as a laboratory

In space far from any stars in empty space

Freely-falling frames

- You can't tell the difference between being in an inertial frame, and being in free fall!
- A freely-falling frame is locally equivalent to an inertial frame
- You can "turn off" the effect of gravity by setting

> Einstein raised this to the level of a postulate: the Equivalence Principle

In space far from any stars your lab in free fall!

Does gravity affect light?

- The constancy of the speed of light is fundamental to special relativity - so it's natural to ask, does gravity affect light?

https://undsci.berkeley.edu/article/natural_experiments
- No? Light has no mass, so cannot be affected by gravity
- Yes? All things fall at the same rate under gravity, even light

Does gravity affect light?

- Another of our thought experiments: suppose a freely-falling observer switches on a torch!

- Since free-fall is locally equivalent to an inertial frame, the light beam must travel in a straight line, as seen by the freely-falling observer

Does gravity affect light?

- However, the freely-falling observer is dropping in the Earth's frame*, in which the beam must appear to curve!
(Earth's view)

* Not a freely-falling frame, so no contradiction
- Gravity causes naturally straight phenomena to travel on curved rails

The curving of space-time

- Gravity is not a force acting in space, causing the path of an object to curve, but is the curvature of space-time itself!
- Note that this is the curvature of space-time, not just space - throwing a ball, and a light ray, across a room look different
- So the "rubber sheet" analogy of gravity is limited!*

* Not that this will stop me using it. Pictures are nice!

Effect of gravity on clock rates

How does gravity affect time?

Consider a thought experiment based on mass/energy equivalence:

- Imagine a tower on the Earth
- Shine some light from the bottom to the top of the tower
- When the light gets to the top, turn its energy into mass
- Drop the mass back down to the bottom of the tower
- Turn it back into light and repeat

http://slideplayer.com/slide/2803242/

Effect of gravity on clock rates

What is happening here??

- If the light initially contains energy $E_{\text {start }}$, then the mass created at the top is $m=E_{\text {start }} / c^{2}$
- As the mass falls, it picks up speed/energy due to gravity
- So $E_{\text {end }}=E_{\text {start }}+E_{\text {grav }}$
- Is this a perpetual motion machine??

No - light must lose energy as it climbs in a gravitational field

http://slideplayer.com/slide/2803242/

Effect of gravity on clock rates

- If light loses energy as it climbs in a gravitational field, what are the implications?
- Losing energy is the same as reducing frequency ($E=h f$), so the time between wave-crests must be increasing
- Space-time diagram:

- Time passes more slowly higher up in a gravitational field!

Effect of gravity on clock rates

- Clocks with no relative motion are ticking at different rates!
- This tells us that, in a gravitational field, we cannot have an extended inertial frame, only a local inertial frame
- We can also see this by considering two freely-falling observers on different sides of the Earth

- Both observers are in inertial frames, but are accelerating towards each other! It's inconsistent with Special Relativity.

Effect of gravity on clock rates

- These effects have been verified by the Pound-Rebka experiment (gamma-ray beam in a tower), atomic clocks in a plane, and every day with the Global Positioning System (GPS)!

https://hackaday.com/2015/11/12/hackaday-dictionary-the-global-positioning-system-gps/

Analogy with accelerating frames

- Another thought experiment - compare the views from an Earth lab (with uniform gravitational field g), and a rocket ship accelerating at $a=g$ with respect to an inertial frame

http://astro.physics.sc.edu/selfpacedunits/Unit57.html

Analogy with accelerating frames

Why are these situations equivalent?

- Objects released in each lab fall with the same acceleration
- Standing in each lab, your weight feels the same
- Clocks further up in each lab are running faster (see our derivation in Class 4 for the accelerating frame)

Gravity as a "fictitious force"

- This equivalence is interesting, because a rocket observer would attribute their "weight" as a "fictitious force" due to being in a non-inertial co-ordinate system

- In the same sense, gravity is a fictitious force due to not being in a freely-falling frame

Gravity as a "fictitious force"

- We are used to standing on the ground, feeling "weight", as being the normal state, and falling being unusual!
- GR says the opposite - being in free-fall is the "normal state", and on the ground we are being accelerated by the floor

> Just as objects in a rotating frame feel a fictitious "centrifugal force", objects in a frame that is not freely falling feel a "fictitious weight" due to gravity!

- Where gravity is present, Special Relativity only applies in small local regions, in which different inertial observers can compare observations of the same set of events
- In General Relativity there is no such thing as extended inertial frames, so we cannot compare separated observations, e.g., the relative velocities of separated objects
- Gravity does not exist in Special Relativity
- GR is "general" because it allows us to describe events from the point of view of accelerated, as well as inertial, observers

