
Numerical Project

Milestone I

AST5220 / AST9420 Spring 2024

Hans Winther

Revenge of the Cosmological Constant

Parameters

Theoretical predictions for

CMB observations

Aim of this project

Recombination
Linear perturbations

Power-spectrum

Background CosmologyParameters

Two key numerical tools

ODE Solver - For solving  
coupled ordinary

differential equations

Spline - For interpolation functions 
defined on discrete points to any 

point + computing derivatives

We will use these again and again so make sure you understand it 
and learn how to use it correctly

Overview Milestone I
• Very simple task: implement a class / module that solves the

background.

• Take cosmological parameters as input, compute derived
parameters (e.g. OmegaR follows from Tcmb, OmegaNu follows
from OmegaR, H0 follows from ‘h’, …)

• Provide functions to get the Hubble function and derivatives H(x),
dHdx(x), …, density functions OmegaB(x), OmegaCDM(x) …

• Solve the conformal time ODE and the cosmic time ODE and spline
the result.

• Also compute some key times in the history of the Universe for our
fiducial cosmology: matter-radiation equality, onset of acceleration,
etc. (see website for list of deliverables).

• Use your code to derive constraints on the parameters by fitting to
supernova data.

• If you are a master-student you are free to ignore curvature and
neutrinos.

Download the code
template

• You can get the code from GitHub: https://github.com/HAWinther/AST5220-Cosmology/ (run [git clone
https://github.com/HAWinther/AST5220-Cosmology.git] in your terminal)

• This has C++ templates (highly recommended - this is what I will assume in these notes) plus old
Fortran and Python templates. We can also offer some support with Julia (talk to Herman). But you are
free to use any programming language you want and feel free to change whatever you want in the
templates. It’s your code and you do it the way you think is best!

• Once downloaded. Edit the Makefile. You need to set paths to the GSL library. See the README in the
code template for how to install this. Once this is done try to compile the codes by running [make clean;
make] and run it [./cmb]. If this works you are ready to start!

• In the C++ template there is an Examples.cpp file that you should take a look at for how to do simple
tasks like solving ODEs and making splines. Try running [make examples] to compile the examples and
run it [./examples].

• For this milestone the relevant files to look at are src/BackgroundCosmology.h and src/
BackgroundCosmology.cpp. Look for // TODO: … for hints on how to get started.

• For each milestone after this you need to edit the src/Main.cpp file (comment out “Remove when module
is completed” return statement).

https://github.com/HAWinther/AST5220-Cosmology/

Getting started
• There are some other utils in the Utils:: namespace. E.g.

create a linear spaced arrays using auto x_array =
Utils::linspace(xmin, xmax, n), compute exp,sin,cos,… on an
array is simply auto a = exp(x_array). Bessel functions etc.

• Let me know if you have any problems installing and running
the code and I can help out.

• It is possible to get an account on ITA and run it from there
(by using ssh), let me know if you want this and I can set it up.

• If you are stuck on something get in touch as soon as
possible and we’ll sort it out together.

Getting started
• How the output of a run of the code looks like “out of the

box”. Some parameters show “nonsense” values as they
have not been set (your job) and we get an error “Spline has
not been created” because we try to evaluate the conformal
time spline which has not yet been created (your job).

Code Template

For more info about the code template and C++ see 
https://cmb.wintherscoming.no/about.php

https://cmb.wintherscoming.no/about.php

Some basic info about C++
• Each milestone is a defined as a class.

• In the template every class has a definition file (.h file) and an
implementation file (.cpp file). The definition file tells us what is
available within the class (private) and what is available outside
the class (public).

• If you want to add a new class variable then you need to add it in
the h-file and then you can use it within any function in the
implementation file.

• Likewise if you want to add a new class function you must
declare it in the h-file.

• To make a class variable available outside the class you can place
it in the public-section (not a great idea as it can be modified
outside the class) or make a function that returns a copy of it
(better solution) like you can see on the right (get_h, get_H0 etc.)

• Arrays start from 0 and go up to N-1, e.g. auto x = Vector(3);
declares a 3 element vector of real numbers that is accessed via
a[0], a[1], a[2].

Definition file:

How to make a Spline

See Examples.cpp

Gives an error if you try to use it before its made.  
Can show warning if you are out of bounds (turn this on!).

To learn more about the algorithms used to make such a spline see  
https://cmb.wintherscoming.no/theory_numerical.php

https://cmb.wintherscoming.no/theory_numerical.php

How to solve an ODE

See Examples.cpp

To learn more about the algorithms used to solve ODEs see  
https://cmb.wintherscoming.no/theory_numerical.php

https://cmb.wintherscoming.no/theory_numerical.php

Good coding practices
• Use proper names for variables and functions. If you

have an array containing the conformal time call it
eta_arr or conformal_time_arr or similar. Don’t call things
a,b,c,d,e,f,g! Its unreadable! Code should be self-
explanatory.

• Document the code with comments. Especially if you do
something special that is not obvious from reading the
code! Related to the thing above - if you use proper
names then the code will be readable without much
comments.

• Turn on error-checks for splines so you get a warning if it
tries to evaluate the function out of bounds so you know
if you messed up something.

• Don’t allocate memory using [new], its a really bad idea.
Always use standard containers like Vector =
std::vector<double>. You will forget to free something
and get memory leaks!

Main
• Code runs from Main.cpp. From here we create the objects we

need in this project, do the solving, output stuff etc.

• The background object is defined in BackgroundCosmology.h 
and implemented in BackgroundCosmology.cpp

1) Set the parameters

2) Create a Background 
object by passing in the parameters  

and initialise it 

3) Call the solve method 
that does all the solving 

we need

4) Print some  
info to screen

5) Output results to file 
for plotting6) Remove this line when done  

and you are ready to move on 
to milestone II

Step 1: Initialization

• Method BackgroundCosmology::BackgroundCosmology in
BackgroundCosmology.cpp 
 
This is the constructor that is run when the object is
created. This is where you should do all the initialisation.

Parameters that  
the object 
takes in

Store them in 
the class variables 

with the same name

Set H0, OmegaR, … and do 
any other initialisation

Step 2: Implementing functions
needed for the solving etc.

• Method BackgroundCosmology::H_of_x(double x) in
BackgroundCosmology.cpp 
 
In order to solve for the conformal time and the age of
the Universe we need to implement the Hubble function
(as function of x = log(a)). You also need to implement
Hp = aH, derivatives of this (needed for future
milestones) and the density functions (Omega’s).

Return the value of 
the Hubble  

function H(x)

NB: x = log(a) is our time-coordinate  
so if e.g. H = 1/a then H(x) = exp(-x)

Step 3: Doing the solving

• Method BackgroundCosmology::solve in
BackgroundCosmology.cpp 
 
This is where are the solving is done. Set up an x =
log(a) array and solve the ODE to get the conformal time
at all those points. Spline the result in the
eta_of_x_spline (that I already defined for you in the h-
file). What is not added here is to compute the lifetime of
the Universe and you should also do that here

Make array of x-points from  
early Universe till today

Define RHS of the  
conformal time ODE

Spline the result 
(and use the spline in get_eta(x)  

to return the value)

Step 4: Checking the results
and outputting data

• Once you have implementing everything you should
make some results. First test the result by calling the
info() function to output some info and check that it is
correct (you can add printing the lifetime of the Universe
here).

• Then you can use the output() function to output some
data to file (you can change this as you want, its just an
example).

Step 5: Derive constraints from supernova
data (Demonstrate that the cosmological

constant is non-zero)
• Run Monte Carlo Markov Chains to derive constraints on the cosmological

parameters using data from Supernova observations (using the redshift-luminosity
distance relation).

• Data is on website. The code to run the chains is provided.

Step 6: Plotting

• For the report you need to make plots. The easiest thing is to
just dump results to a text-file and use Matplotlib in Python,
Gnuplot or whatever you prefer to make the plots.

• NB: use sensible axes for the plots. If you for example plot
H(a) vs a then you must use logarithmic axes otherwise you
see nothing. Plots should be informative.

• Useful to add vertical lines denoting relevant times if they are
relevant for understanding the plot (e.g. matter-radiation
equality, onset of acceleration).

• See the website for plots you can compare your results to (for
different parameters than you are meant to use for the report).

Step 7: Writing the report
• See https://cmb.wintherscoming.no/milestone1.php for a list of all the

things you should compute / plots to make. You are of course free to
make and include other plots if you want to.

• You write it using the LaTeX template of the Astronomy and Astrophysics
journal so that you get experience writing an actual paper. Try to
download and use it and let me know if you have problems.

• See https://cmb.wintherscoming.no/report.php for how to write the report.

• If you have problems with that one option is to write the report online
using for example Overleaf (its free as long as you don’t have many
projects and has the template already included).

• For the equations you need in the report you can just copy that from the
website (right-click an equation in your browser and press “Show Math
As… -> Latex”).

• Send me the code by email (or just a link to a GitHub repository if you
have that) and the report when you are done.

https://cmb.wintherscoming.no/milestone1.php
https://cmb.wintherscoming.no/report.php

Constants and Units
• In this course you will need constants of nature and also to

deal a bit with units. The code-template has constants of
nature included and by default this is in SI units (one could
change this by adjusting the constants m,s,kg,K). See src/
Utils.h This struct can also be used to set numerical settings
like x-ranges, k-ranges etc. to use

• You can access the constants here anywhere in the template
by simply writing e.g. Constants.Mpc to get a megaparsec in
SI units (meter) or Constants.hbar to get Plancks constant (in
units of Js).

• For example the Hubble parameter today (in units of 1/s) is
then: 
H0 = 100 * h * Constants.km / Constants.s / Constants.Mpc;
or simply H0 = Constants.H0_over_h * h;

• In future milestones you also have to make sure that the
equations are in the right units (i.e. that constants like c,
hbar, kb are restored). More info about units: https://
cmb.wintherscoming.no/theory_units.php

https://cmb.wintherscoming.no/theory_units.php
https://cmb.wintherscoming.no/theory_units.php

Useful literature
• Read through this paper: https://arxiv.org/pdf/

astro-ph/0606683.pdf It’s low level and
describes all the things you have to do! Good
reference to have!

• More advanced paper describing all we are
going to do in more detail: Ma & Bertschinger
“Cosmological Perturbation Theory in the
Synchronous and Conformal Newtonian
Gauges” https://arxiv.org/pdf/astro-ph/
9506072v1.pdf

• If you don’t know C++ at all see https://
www.w3schools.com/cpp/cpp_intro.asp for an
introduction

• Good Luck!

https://arxiv.org/pdf/astro-ph/0606683.pdf
https://arxiv.org/pdf/astro-ph/0606683.pdf
https://arxiv.org/pdf/astro-ph/9506072v1.pdf
https://arxiv.org/pdf/astro-ph/9506072v1.pdf
https://arxiv.org/pdf/astro-ph/9506072v1.pdf
https://www.w3schools.com/cpp/cpp_intro.asp
https://www.w3schools.com/cpp/cpp_intro.asp

