Numerical Project
Milestone |

Revenge of the Cosmological Constant

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

i e
T A AT e

AT A T S L o (S AR 5. ﬁ;ﬂ
i T _‘.,,‘,.n&“l'a!a”g [+ amgm'_’“ -
« ! e & 9 X
N s, LR A
Y ST] S
2 -L‘ﬂ 4 -:.-". Je @
y R R g y
AT Lo % \'_ . -'
RTNIRTA 8T 2
e % P sa iy Sl
| ; Zo ST e
i
‘. >

Inflation &=

Fluctuations' &

1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years

AST5220 / AST9420 Spring 2024
Hans Winther

Aim of this project

Theoretical predictions for

CMB observations

Parameters

'he CMB angular power-spectrum compared to Planck

h=0.67 .
Tempo = 2-72’55K, e | Theory prediction ’
Nege = 3.046, } Planck 2018 \
QbO = 005, 000 ’(]l
Qcpmo = 0.267, 000 ,‘
Qk@ = 07 ‘l *
7(4\"? f |
Q0= Negr- = | — Q > 000 A |
0 off " g (11> 105 = 4000 |
Qo =1 — (Qro + Qo + Qeomo + y0 + Do), >
n, = 0.965,
A, =21-1079,

Y, = 0.245, / t A
Zreion = 8, 2000 4 l /’/ |* ‘J ,v’.’
// V

luK)
>

Ty
ral

[

ff+1

Azteion = 057
ZHereion — 357 s

AZHereion = 0.5.
1000 4 [— n _1 &‘

10¢ 10¢ 10°
Multipole f

(&)

00+ 1)CF/2n (uK)”

Parameters

h = 0.67,
Tomo = 2.7255 K,
Negr = 3.046,
Qo = 0.05,
Qcpmo = 0.267,
Qo = 0,

774\
Q0 = Negr + 8(11) Qy0,

n, = 0.965,
A,=21-107°

/ H(z), H(z), 22,

Qpo =1 — (o + Qo + Lepmo + o + Do),
=040 Recombination

Y, = 0.245,
Zreion — 87
AZeion = 0.5,

ZHereion — 357
AZHereion = 0.5.

BA(T,) = B(Ty)e’/*T, (dimension 1/s)

a®(Ty) =

A2s—)ls + Aa
A2s—>13 + Aa + 18(2) (Tb)
(dimension 1/s)
Aoeors = 8.227s71

3 3
AL+ H (3<0) , (dimension 1/s)
8m)%nys

nis = (1 — X,)ng, (dimension 1/m?)

H}Q
ng=(1- Y)Wm%, (dimension 1/m?)

Cr(Ty) =

, (dimensionless),

, (dimension 1/s)

me Tb

3/2
B(Ty) = a®)(Tb)<) e /T (dimension 1/s)

647 o?

V2Tm m?
¢2(Tp) = 0.4481n(ey/T3), (dimensionless).

;—0 $2(T}), (dimension m?/s)
b

The CMB angular power-spectrum compared to Planck

~— Theory prediction »
b Planck 2018

PR Power-spectrum

10! 10? 10°
tMultipole £

gl Background Cosmology

d*H(z)

2 2
C£ - ; /k Pprimordjal(k)dk

o M(z), Qi(z)

Linear perturbations

Photon temperature multipoles:

Photon polarization multipoles:

Neutrino multipoles:

Cold dark matter and baryons:

Metric perturbations:

_'Ub

m 1'16“ 2 <l < by

1
— —1II <
10 6[,2:|) 1< < Zmax

2 <4 < lmaxy

o -8 "N 5 — [Wcomoa com + Doa 18 + 42,0020 + 4000 2N
3H 2H
HZ
¥ =2~ = [0000: + ol

Two key numerical tools

Spline - For interpolation functions

ODE Solver - For solving defined on discrete points to any

point + computing derivatives

coupled ordinary
differential equations

Cubic-spline interpolation

(v [A(zy, ¥,y ..,y D) \ 1.0 -
yE,") f2 (w’y’yl,yﬂ,“.’y(n—l))

X Unear
~—— Cubic Spline
— True

\y(-'")) \fm (z,y,y.y",... ,y(n—l))) 0.0

o
=
N
W -
IS
w
(o2}

We will use these again and again so make sure you understand it
and learn how to use it correctly

Overview Milestone |

Very simple task: implement a class / module that solves the
background.

Take cosmological parameters as input, compute derived
parameters (e.g. OmegaR follows from Tcmb, OmegaNu follows
from OmegaR, HO follows from ‘h’, ...)

Provide functions to get the Hubble function and derivatives H(x),
dHdx(x), ..., density functions OmegaB(x), OmegaCDM(x) ...

Solve the conformal time ODE and the cosmic time ODE and spline
the result.

Also compute some key times in the history of the Universe for our
fiducial cosmology: matter-radiation equality, onset of acceleration,
etc. (see website for list of deliverables).

Use your code to derive constraints on the parameters by fitting to
supernova data.

If you are a master-student you are free to ignore curvature and
neutrinos.

class BackgroundCosmology{
private:

// Cosmological parameters
double h;

double OmegaB;

double OmegaCDM;

double OmegaLambda;

double Neff;

double TCMB;

// Derived parameters
double OmegaR;

double OmegaNu;
double OmegakK;

double HO;

// Little h = HO/(100km/s/Mpc)
// Baryon density today

// CDM density today

// Dark energy density today

// Effective number of relativis
// Temperature of the CMB today

// Photon density today (follows
// Neutrino density today (follo
// Curvature density = 1 - Omega
// The Hubble parameter today HO

// start and end of x-integration (can be changed)
double x start = Constants.x_start;
double x end = Constants.x_end;

// Splines to be made
Spline eta of x spline{"eta"};

public:

// Constructors
BackgroundCosmology() = delete,
BackgroundCosmology (

double h,

double OmegaB,

double OmegaCDM,

double OmegaLambda,

double Neff,

double TCMB

)i

// Print some useful info about the class

void info() const;

// Do all the solving
void solve();

// Output some results to file
void output(const std::string filename) const;

// Get functions that we must implement
double eta of x(double x) const;

double H of x(double x) const;

double Hp of x(double x) const;

double dHpdx of x(double x) const;
double ddHpddx of x(double x) const;

double get_ OmegaB(double x = 0.0) const;
double get OmegaM(double x = 0.0) const;
double get OmegaR(double x = 0.0) const;
double get OmegaRtot(double x = 0.0) const;
double get_OmegaNu(double x = 0.0) const;
double get OmegaCDM(double x = 0.0) const;

double get_OmegalLambda(double x = 0.0) const;
double get OmegaK(double x = 0.0) const;
double get_ OmegaMnu(double x = 0.0) const;

double get HO() const;
double get_h() const;
double get_ Neff() const;
double get_ TCMB() const;

Download the code
template

You can get the code from GitHub: https://github.com/HAWinther/AST5220-Cosmology/ (run |
] in your terminal)

This has C++ templates (highly recommended - this is what | will assume in these notes) plus old
Fortran and Python templates. We can also offer some support with Julia (talk to Herman). But you are
free to use any programming language you want and feel free to change whatever you want in the
templates. It’s your code and you do it the way you think is best!

Once downloaded. Edit the Makefile. You need to set paths to the GSL library. See the README in the
code template for how to install this. Once this is done try to compile the codes by running [
]and run it |]. If this works you are ready to start!

In the C++ template there is an Examples.cpp file that you should take a look at for how to do simple
tasks like solving ODEs and making splines. Try running [] to compile the examples and
run it [].

For this milestone the relevant files to look at are src/BackgroundCosmology.h and src/
BackgroundCosmology.cpp. Look for // TODO: ... for hints on how to get started.

For each milestone after this you need to edit the src/Main.cpp file (comment out “Remove when module
is completed” return statement).

https://github.com/HAWinther/AST5220-Cosmology/

Getting started

There are some other utils in the Utils:: namespace. E.g.
create a linear spaced arrays using auto x_array =
Utils::linspace(xmin, xmax, n), compute exp,sin,cos,... on an
array is simply auto a = exp(x_array). Bessel functions etc.

Let me know if you have any problems installing and running
the code and | can help out.

It is possible to get an account on ITA and run it from there
(by using ssh), let me know if you want this and | can set it up.

If you are stuck on something get in touch as soon as
possible and we’ll sort it out together.

Getting started

* How the output of a run of the code looks like “out of the
box”. Some parameters show “nonsense” values as they
have not been set (your job) and we get an error “Spline has
not been created” because we try to evaluate the conformal
time spline which has not yet been created (your job).

Info about cosmology class:
OmegaB: .05

OmegaCDM: .25
OmegalLambda: 0.7

OmegaKk: .44659e-323
OmegaNu: .94066e-324
OmegaR: .94066e-324
Neff: .046

h: o

TCMB: . 7255

NOCWPRrRPPPPOOO®

Error Spline::eval [etal] Spline has not been created!
terminate called after throwing an instance of 'char constx'
Aborted

Code Template

For more info about the code template and C++ see
https://cmb.wintherscoming.no/about.php

https://cmb.wintherscoming.no/about.php

Some basic info about C++

Definition file:

class BackgroundCosmology{
private:

e Each milestone is a defined as a class. P -

double h; // Little h = HO/(100km/s/Mpc)
double OmegaB; // Baryon density today
double OmegaCDM; // CDM density today

double OmegaLambda; // Dark energy density today

e |n the template every class has a definition file (.h file) and an e [/ Bifective number of reletivic
implementation file (.cpp file). The definition file tells us what is [/ Derived parameters

double OmegaR; Jl Photog degzi:gt;oizga;fotiin
available within the class (private) and what is available outside i b el e

double HO; // The Hubble parameter today HO

the CIaSS (pUb“C). // start and end of x-integration (can be changed)

double x start = Constants.x start;
double x_end = Constants.x _end;

// Splines to be made

e |f you want to add a new class variable then you need to add it in SRt
the h-file and then you can use it within any function in the o
implementation file. S e

double h,

double OmegaB,
double OmegaCDM,
double OmegaLambda,
double Neff,

e Likewise if you want to add a new class function you must

)i

deCIare it in the h-file- // Print some useful info about the class

void info() const;

// Do all the solving
void solve();

* To make a class variable available outside the class you can place R
it in the public-section (not a great idea as it can be modified YOS outpar(const sediisteing fienane) conets
. . . // Get functions that we must implement
outside the class) or make a function that returns a copy of it Coithe SR S) e

. . . double H_of_ x(double x) const;
(better solution) like you can see on the right (get_h, get_HO etc.) double Hp_of x(double x) const;
double dHpdx of x(double x) const;
double ddHpddx of x(double x) const;
double get_ OmegaB(double x = 0.0) const;
e Arrays start from 0 and go up to N-1, e.g. auto x = Vector(3); ey ey Pt e

double get_OmegaRtot(double x = 0.0) const;

declares a 3 element vector of real numbers that is accessed via double get_OmegaNu(double x = 0.0) const;

double get_OmegaCDM(double x = 0.0) const;
Ei[()], Ei[1], Ei[:z]_ double get OmegaLambda(double x = 0.0) const;

double get_ OmegaK(double x = 0.0) const;

double get_OmegaMnu(double x = 0.0) const;

double get HO() const;

double get_h() const;

double get_Neff() const;

double get TCMB() const;

How to make a Spline
See Examples.cpp

void make spline()({

const double xmin =
const double xmax =
const int npts

Vector x array = Utils::linspace(xmin, xXmax, npts);
Vector y array exp(x array);

Spline f spline(x array, y array, 'Function y = exp(x)");

std::cout << "e"log(2) = " << f spline(log(2)) << "\n";

Gives an error if you try to use it before its made.
Can show warning if you are out of bounds (turn this on!).

To learn more about the algorithms used to make such a spline see
https://cmb.wintherscoming.no/theory numerical.php

https://cmb.wintherscoming.no/theory_numerical.php

How to solve an ODE
See Examples.cpp

// Domain over which we want to solve the ODE
const double xmin = 0.0;
const double xmax 1L (e

const int npts = 10;

// Array of points to store the solution at
Vector x array = Utils::linspace(xmin, xmax, npts);

// Define the ODE y0' =yl ; yl' = -y0

ODEFunction dydx = [&](double x, const double *y, double *dydx){
dydx[0] = y[1];
dydx[1] = -y[0];
return GSL_SUCCESS;

}i

// Initial conditions
double y0 ini = 0.0;

double yl ini = 1.0;

Vector y ic{y0 ini, yl ini};

// Solve the ODE
ODESolver ode;
ode.solve(dydx, x array, y ic);

// Get the data: this is a Vector2D with data[i] = {yO0(xi), yl(xi)}
auto result = ode.get data();

To learn more about the algorithms used to solve ODEs see
https://cmb.wintherscoming.no/theory numerical.php

https://cmb.wintherscoming.no/theory_numerical.php

Good coding practices

Use proper names for variables and functions. If you
have an array containing the conformal time call it
eta_arr or conformal_time_arr or similar. Don’t call things
a,b,c,d,e,f,g! Its unreadable! Code should be self-
explanatory.

Document the code with comments. Especially if you do
something special that is not obvious from reading the
code! Related to the thing above - if you use proper
names then the code will be readable without much
comments.

Turn on error-checks for splines so you get a warning if it
tries to evaluate the function out of bounds so you know
if you messed up something.

Don’t allocate memory using [new], its a really bad idea.
Always use standard containers like Vector =
std::vector<double>. You will forget to free something
and get memory leaks!

// Bad
SIS @ By Gy &p 19p G Glp coof
void comp(){

il i

}i

// Better

double eta, tau, OmegaM, ... ;

void compute conformal time(){
g

}

// Solve the Saha equation system by using

// the iterative method in Callin

hile((f_electron - f electron old) > 1le-10){
(e

}

77 Bem”E Glo Pl
double *bad_idea = new double[100];

//...you will access elements outside the range
bad _idea[101] = 10.0;

//...and you will forget to free the memory

delete[] bad_idea;

// Use a standard container
Vector better(100);

// And turn on the compiler flags to get an error if you do this
better[101] = 10.0; // Throws error!

Main

Code runs from Main.cpp. From here we create the objects we

need in this project, do the solving, output stuff etc.

The background object is defined in BackgroundCosmology.h

/

1) Set the parameters

and implemented in BackgroundCosmology.cpp

2) Create a Background

object by passing in the parameters

and initialise it

3) Call the solve method
that does all the solving
we need

6) Remove this line when done
and you are ready to move on
to milestone Il

int main(int argc, char sxargv){
Utils::StartTiming("Everything");

//
// Parameters
//

// Background parameters
double h = 0.7;

double OmegaB = 0.05;
double OmegaCDM = 0.25;
double OmegalLambda = 0.7;
double Neff = 3.046;
double TCMB = 2.7255;

// Recombination parameters
double Yp = 0.24;

//
// Module I
//

\ // Set up and solve the background

BackgroundCosmology cosmo(h, OmegaB, OmegaCDM, OmegalLambda, Neff, TCMB);
cosmo.solve();

cosmo.info(); < .
// Output background evolution quantities D 4) Prlnt some

cosmo.output("cosmology.txt");

Info to screen
// Remove when module is completed
return 0;

//
// Module II

Z 5)- Output results-to file
for plotting

Step 1: Initialization

Method BackgroundCosmology::BackgroundCosmology in
BackgroundCosmology.cpp

This is the constructor that is run when the object is
created. This is where you should do all the initialisation.

Parameters that
the object
takes in

o0
x

Q QO QO QO QO «u
=

oundCosmology: :Backgroun
ouble h,

ouble OmegaB,
ouble OmegaCDM,
ouble OmegalLambda,
ouble Neff,

e o) Store them in

h(h),

OmegaB(OmegaB) , — th I 1 bI
OmegaCDM(0OmegaCDM) , e c ass varla es
Omegalambda(Omegalambda),

with the same name

TCMB(TCMB)

//
// TODO: Compute OmegaR, OmegaNu, OmegaK, HO, ...
//
//en.
//-

Set HO, OmegaR, ... and do
any other initialisation

Step 2: Implementing functions
needed for the solving etc.

e Method BackgroundCosmology::H_of x(double x) in
BackgroundCosmology.cpp

In order to solve for the conformal time and the age of
the Universe we need to implement the Hubble function
(as function of x = log(a)). You also need to implement
Hp = aH, derivatives of this (needed for future
milestones) and the density functions (Omega’s).

double BackgroundCosmology::H_of_x(double x) const{

e e e e e e e e e e e e S S e e e e e e e e e e e e e e e e e e e s
// TODO: Implement...
Return the value Of //==============_____==___==_______====___====___====___===================:==:
the Hubble e
function H(x)
return 0.0;

NB: x = log(a) is our time-coordinate
so if e.g. H = 1/a then H(x) = exp(-x)

Step 3: Doing the solving

//
// Do all the solving. Compute eta(x)
//

// Solve the background
void BackgroundCosmology::solve(){
Utils::StartTiming("Eta");

Method BackgroundCosmology::solve in

//
(:) // TODO: Set the range of x and the number of points for the splines
BaCkground OsmOIOgy.Cpp // For this Utils::linspace(x_start, x_end, npts) is useful
//

Vector x_array;

This is where are the solving is done. Set up an x =
log(a) array and solve the ODE to get the conformal time

The ODE for deta/dx
ODEFunction detadx = [&] (double x, const double *eta, double xdetadx){

at all those points. Spline the result in the ———
eta_of_x_spline (that | already defined for you in the h- /=

file). What is not added here is to compute the lifetime
the Universe and you should also do that here

Make array of x-points from

detadx[0] = 0.0;

return GSL_SUCCESS;
}

early Unlverse tIII tOday // TODO: Set the initial condition, set up the ODE system, solve and make

// the spline eta_of_x_spline

//

Define RHS of the -

conformal time ODE o
Spline the result
(and use the spline in get_eta(x)
to return the value)

Step 4: Checking the results
and outputting data

//

// Print out info about the class

//

void BackgroundCosmology::info() const{

Once you have implementing everything you should stdiicout << “\n';

std::cout << "Info about cosmology class:\n";

make some results. First test the result by calling the stdiicout << "OmegaBi " << OnmegaB << "\n';

std::cout << "OmegaCDM: "' << OmegaCDM << "\n";
info() function to output some info and check that it is Fudiicout << TOnegalanhda: << Onegalanbda << "\n";
) i .) . std::cout << "OmegaK: << Omega << "\n";
correct (you can add printing the lifetime of the Universe Stiicout << Omegau: - o< Onegaly << g
std::cout << "OmegaR: " << OmegaR << "\n";
here)_ std::cout << "Nefg: "o<< Nefi << "\n";
std::cout << "h: " << h << "\n";
std::cout << "TCMB: " << TCMB << "\n";

std::cout << std::endl;

}

e Then you can use the output() function to output some

data to file (you can change this as you want, its just an /) ovtput some data to fite

example). \//gid BackgroundCosmology: :output(const std::string filename) const{
const double x_min = -10.0;
const double x_max = 0.0;

const int n_pts = 100;

Vector x_array = Utils::linspace(x_min, x_max, n_pts);

std::ofstream fp(filename.c_str());
auto print_data = [&] (const double x) {

fp << x << "
fp << eta_of_x(x) <" "
fp << Hp_of_x(x) <"
fp << dHpdx_of_x(x) << "M

fp << get_OmegaB(x) << "M
fp << get_OmegaCDM(x) << "M
fp << get_OmegalLambda(x) << " "

fp << get_OmegaR(x) << "M
fp << get_OmegaNu(x) << "M
fp << get_OmegaK(x) << "M
fp <<"\n";

};
std::for_each(x_array.begin(), x_array.end(), print_data);

}

Step 5: Derive constraints from supernova
data (Demonstrate that the cosmological
constant is non-zero)

e Run Monte Carlo Markov Chains to derive constraints on the cosmological
parameters using data from Supernova observations (using the redshift-luminosity
distance relation).

e Data is on website. The code to run the chains is provided.

Posterior for Qp

—== Flat Universe
1.4 - _ 2.5 1 ; -—-- Planck best-fit value
® 20 constaint

1o constaint

T 1.4
0.8 1.0

Step 6: Plotting

3.00

2.754
2.50 4

2.254

1.75 A1

For the report you need to make plots. The easiest thing is to
just dump results to a text-file and use Matplotlib in Python,
Gnuplot or whatever you prefer to make the plots.

NB: use sensible axes for the plots. If you for example plot
H(a) vs a then you must use logarithmic axes otherwise you
see nothing. Plots should be informative.

Useful to add vertical lines denoting relevant times if they are
relevant for understanding the plot (e.g. matter-radiation

equality, onset of acceleration).

103

102 4

See the website for plots you can compare your results to (for
different parameters than you are meant to use for the report).

100 4

107!

o

Step 7: Writing the report

See https://cmb.wintherscoming.no/milestonel.php for a list of all the
things you should compute / plots to make. You are of course free to
make and include other plots if you want to.

You write it using the LaTeX template of the Astronomy and Astrophysics
journal so that you get experience writing an actual paper. Try to
download and use it and let me know if you have problems.

See https://cmb.wintherscoming.no/report.php for how to write the report.

If you have problems with that one option is to write the report online
using for example Overleaf (its free as long as you don’t have many
projects and has the template already included).

For the equations you need in the report you can just copy that from the
website (right-click an equation in your browser and press “Show Math
As... -> Latex”).

Send me the code by email (or just a link to a GitHub repository if you
have that) and the report when you are done.

Astronomy & Astrophysics manuscript no. output
August 21, 2019

©ESO 2019

Hydrodynamics of giant planet formation

I. Overviewing the x-mechanism

G. Wuchterl' and C. Ptolemy**

Institute for Astronomy (IfA), University of Vienna, Turkenschanzstrasse 17, A-1180 Vienna

e-mail: wuchterl@anok.ast.univie.ac.at
* University of Alexandria, Department of Geography
e-mail: ¢.ptolemyGhipparch. uheaven. space **

Received September 15, 1996; accepted March 16, 1997

ABSTRACT

Context. To inves

e the physical nature of the ‘nucleated instability” of proto giant planets, the stability of layers in static, radiative

gas spheres is analysed on the basis of Baker's standard one-zone model

Aims. It is shown that stability depends only upon the equations of state, the opacities and the local thermodynamic state in the
layer. Stability and instability can therefore be expressed in the form of stability equations of state which are universal for a given
composition

Methods. The stability equations of state are calculated for solar composition and are displayed in the domain 14 <
0,88 < lge/lergg™] < 17.7. These dppln\ may be used to determine the one-zone stability of layers in stellar or planetary
structure models by directly reading off the value of the stability equations for the thermodynamic state of these layers, specified by
state quantities as density p, lemperature T or specific internal energy e. Regions of instability in the (p. e)-plane are described and
related to the underlying microphysical processes

Results. Vibrational instability is found to be a common phenomenon at temperatures lower than the second He ionisation zone. The

x-mechanism is widespread under “cool’ conditions

Key words. giant planet formation — x-mechanism — stability ¢

1. Introduction

In the nucleated instability (also called core instability) hypothe-
sis of giant planet formation, a critical mass for static core enve.
lope protoplanets has been found. Mizuno (1980) determined the
critical mass of the core to be about 12 M, (M, = 5.975x 107 g
is the Earth mass), which is independent of the outer boundary
conditions and therefore independent of the location in the solar
nebula. This critical value for the core mass corresponds closely
to the cores of today’s giant planets.

Although no hydrodynamical study has been available many
workers conjectured that a collapse or rapid contraction will en
sue after accumulating the critical mass. The main motivation
for this article is to investigate the stability of the static envelope
at the critical mass. With this aim the local, linear stability of
static radiative gas spheres is investigated on the basis of Baker's
(1966) standard one-zone model

Phenomena similar to the ones described above for giant
planet formation have been found in hydrodynamical mod
els concerning star formation where protostellar cores ex
plode (Tscharnuter 1987, Balluch 1988), whereas earlier studies
found quasi-steady collapse flows. The similarities in the (mi
cro)physics, i.e., constitutive relations of protostellar cores and
protogiant planets serve as a further motivation for this study

e of the elements in the author field

* Just t0 show the usa
** The university of heaven temporarily does not accept e-mails

gas spheres

2. Baker's standard one-zone model

In this section the one-zone model of Baker (1966), originally
used to study the Cepheid pulsation mechanism, will be briefly
reviewed. The resulting stability criteria will be rewritten in
terms of local state variables, local timescales and constitutive
relations.

Baker (1966) investigates the stability of thin layers in self
gravitating, spherical gas clouds with the following properties:

- hydrostatic equilibrium,
~ thermal equilibrium,

- energy transport by grey radiation diffusion.

For the one-zone-model Baker obtains necessary conditions for
dynamical, secular and vibrational (or pulsational) stability (Egs.
(34a,b,¢) in Baker 1966). Using Baker's notation:

M, mass internal to the radius s

m mass of the zone

ro unperturbed zone radius

po unperturbed density in the zone

Ty unperturbed temperature in the zone
Ly unperturbed luminosity

Ey thermal energy of the zone

and with the definitions of the local cooling time (see Fig

Ey

Gl) n

Article number, page 1 of 3

https://cmb.wintherscoming.no/milestone1.php
https://cmb.wintherscoming.no/report.php

Constants and Units

* In this course you will need constants of nature and also to

deal a bit with units. The code-template has constants of
nature included and by default this is in Sl units (one could
change this by adjusting the constants m,s,kg,K). See src/
Utils.h This struct can also be used to set numerical settings
like x-ranges, k-ranges etc. to use

You can access the constants here anywhere in the template
by simply writing e.g. Constants.Mpc to get a megaparsec in
Sl units (meter) or Constants.hbar to get Plancks constant (in
units of Js).

For example the Hubble parameter today (in units of 1/s) is
then:

HO = 100 * h * Constants.km / Constants.s / Constants.Mpc;
or simply HO = Constants.HO_over_h * h;

In future milestones you also have to make sure that the
equations are in the right units (i.e. that constants like c,
hbar, kb are restored). More info about units: https://
cmb.wintherscoming.no/theory units.php

// The constants used in this code. Everything is here in SI units

extern struct ConstantsAndUnits {
// Basic units (here we use SI)

const double m = 1.0;
const double s = 1.0;
const double kg = 1.0;
const double K =1.0;

// Derived units

const double km = 1e3 * m;
const double N = kg*m/ (s%*s);
const double J = Nkm;

const double W =1/s;
const double Mpc = 3.08567758e22 x m;
const double eV = 1.60217653e-19 x J;

// Physical constants
const double k_b = 1.38064852e-23 x J/K;
= 9.10938356e-31 * kg;
= 1.6735575e-27 * kg;

= 2.99792458e8 * m/s;

const double m_e
const double m_H
const double ¢
const double G
const double hbar = 1.054571817e-34 * Jx*s;
const double sigma_T = 6.6524587158e-29 x mxm;
const double lambda_2sls = 8.227 / s;

const double HO_over_h = 100 * km/s/Mpc;
const double epsilon_0 = 13.605693122994 * eV;
= 24.587387 * eV;

= 4.0 % epsilon_0;

const double xhi@
const double xhil

= 6.67430e-11 * Nxmsm/ (kg*kg) ;

// Length (in meters)

// Time (in seconds)

// Kilo (in kilos)

// Temperature (in Kelvins)

// Kilometers
// Newton

// Joule

// Watt

// Megaparsec
// Electronvolt

// Bolzmanns constant

// Mass of electron

// Mass of hydrogen atom

// Speed of light

// Gravitational constant

// Reduced Plancks constant

// Thomas scattering cross-section

// Transition time between 2s and 1s in Hydrogen
// HO / h

// Ionization energy for the ground state of hydrogen
// Ionization energy for neutral Helium

// Ionization energy for singly ionized Helium

https://cmb.wintherscoming.no/theory_units.php
https://cmb.wintherscoming.no/theory_units.php

Useful literature

* Read through this paper: https://arxiv.org/pdf/

astro-ph/0606683.pdf It’s low level and
describes all the things you have to do! Good
reference to havel!

* More advanced paper describing all we are
going to do in more detail: Ma & Bertschinger
“Cosmological Perturbation Theory in the
Synchronous and Conformal Newtonian
Gauges” https://arxiv.org/pdf/astro-ph/
9506072v1.pdf

e |f you don’t know C++ at all see https://
www.w3schools.com/cpp/cpp intro.asp for an
introduction

e (Good Luck!

How to calculate the CMB spectrum

Petter Callilﬁ
Department of Physics, University of Oslo, N-0316 Oslo, Norway

(Dated: June 28, 2006)

We present a self-contained description of everything needed to write a program that calculates
the CMB power spectrum for the standard model of cosmology (ACDM). This includes the equa-
tions used, assumptions and approximations imposed on their solutions, and most importantly the
algorithms and programming tricks needed to make the code actually work. The resulting program
is compared to CMBFAST and typically agrees to within 0.1 % — 0.4%. It includes both helium,
reionization, neutrinos and the polarization power spectrum. The methods presented here could
serve as a starting point for people wanting to write their own CMB program from scratch, for in-
stance to look at more exotic cosmological models where CMBFAST or the other standard programs
can’t be used directly.

Cosmological Perturbation Theory in the Synchronous and Conformal
Newtonian Gauges

Chung-Pei Ma!
Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, CA 91125

and

Edmund Bertschinger?
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

https://arxiv.org/pdf/astro-ph/0606683.pdf
https://arxiv.org/pdf/astro-ph/0606683.pdf
https://arxiv.org/pdf/astro-ph/9506072v1.pdf
https://arxiv.org/pdf/astro-ph/9506072v1.pdf
https://arxiv.org/pdf/astro-ph/9506072v1.pdf
https://www.w3schools.com/cpp/cpp_intro.asp
https://www.w3schools.com/cpp/cpp_intro.asp

